Search results for "Maximum efficiency"

showing 8 items of 8 documents

Nd:KGW Laser under Flashlamp-pumping at Repetition Rate up to 50 Hz and Average Power of 70 W (free-lasing and Q-switched mode)

1997

The laser performance of Nd:KGd(WO4)2 crystal or Nd:KGW has been studied under flashlamp-pumping in the free-running and Q-switched mode (with active or passive Q-switching) at repetition rate up to 50 Hz. Maximum output powers respectively of 70 and 30 W were achieved at 1.06 pm with a maximum efficiency of 6%. Free-running emission was also obtained at 1.35 pm with a maximum average power of 24 W and a total efficiency of 2.9% at this wavelength. A comparison with a similar Nd:YAG crystal is given showing a noticeable advantage for Nd:KGW.

Materials scienceRepetition (rhetorical device)business.industryMode (statistics)Laserlaw.inventionPower (physics)Maximum efficiencyCrystalWavelengthOpticslawbusinessLasing thresholdAdvanced Solid State Lasers
researchProduct

Power tracking with maximum efficiency for wireless charging of E-bikes

2014

Wireless charging techniques, based on Inductive Power Transfer (IPT), are attractive for Electric Vehicles (EV), due to benefits such as convenience and safety. An accurate valuation of the maximum achievable efficiency in an IPT system is extremely unlikely due to the high sensitivity to parasitic elements variations. Therefore, an “on site” procedure of power efficiency characterization is useful to get a precise description of the efficiency curve and obtain the actual maximum efficiency. In this paper, a power tracking algorithm aiming at efficiency maximization is proposed for a Wireless Charging system. The algorithm aims at finding the maximum power transfer efficiency with respect …

Engineeringbusiness.industryInductive power transfer wireless battery charging power flow control power tracking maximum efficiencyControl variableMaximizationSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciSettore ING-INF/01 - ElettronicaMaximum power point trackingMaximum efficiencyElectronic engineeringMaximum power transfer theoremWirelessbusinessElectrical efficiencyPower control2014 IEEE International Electric Vehicle Conference (IEVC)
researchProduct

Inducible Genetic Code Expansion in Eukaryotes

2020

Abstract Genetic code expansion (GCE) is a versatile tool to site‐specifically incorporate a noncanonical amino acid (ncAA) into a protein, for example, to perform fluorescent labeling inside living cells. To this end, an orthogonal aminoacyl‐tRNA‐synthetase/tRNA (RS/tRNA) pair is used to insert the ncAA in response to an amber stop codon in the protein of interest. One of the drawbacks of this system is that, in order to achieve maximum efficiency, high levels of the orthogonal tRNA are required, and this could interfere with host cell functionality. To minimize the adverse effects on the host, we have developed an inducible GCE system that enables us to switch on tRNA or RS expression whe…

Context (language use)Computational biology010402 general chemistry01 natural sciencesBiochemistryInsert (molecular biology)Amino Acyl-tRNA SynthetasesRNA TransferEscherichia coliHumansunnatural amino acidAmino AcidsMolecular BiologyT-RExchemistry.chemical_classificationTet-On010405 organic chemistryChemistryCommunicationOrganic ChemistryEukaryotaGenetic codeamber suppressionCommunications0104 chemical sciencesAmino acidMaximum efficiencyFluorescent labellingHEK293 CellsGenetic CodePylRSTransfer RNAMolecular MedicineAmber Stop CodonChemBioChem
researchProduct

Wireless Charging Systems for Electric Vehicle Batteries

bi-directional inductive power transfervehicular and wireless technologieelectric vehiclewireless power transfercontactless power transferinductive power transfer; wireless battery charging; electric vehicles; E-bikes; physiological compatibility; wireless power transfer; contactless battery charging; magnetic field simulation; contactless power transfer; vehicular and wireless technologies; bi-directional inductive power transfer; power flow control; power tracking; maximum efficiencymagnetic field simulationSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciSettore ING-INF/01 - ElettronicaE-bikepower flow controlpower trackingcontactless battery chargingwireless battery chargingphysiological compatibilityinductive power transfermaximum efficiency
researchProduct

Preparation of tungstophosphoric acid/cerium-doped NH2-UiO-66 Z-scheme photocatalyst: a new candidate for green photo-oxidation of dibenzothiophene a…

2021

International audience; The goal of this study was to introduce an effective visible-light induced photocatalytic system with a good ability for photocatalytic oxidative desulfurization (PODS) and denitrogenation (PODN) using molecular oxygen (O2) as an oxidant. In this regard, tungestophosphoric acid (PW12) was supported onto cerium-doped NH2-UiO-66 (PW12/Ce-NUiO-66) and employed for the photo-oxidation of dibenzothiophene (DBT) and quinoline (Qu). Herein, using cerium (Ce) as a “mediator” facilitated the separation of charge carriers, while NH2-UiO-66 remarkably enhanced the surface area with plentiful adsorption sites and shifted the adsorption edge of PW12to the visible region. The sum …

pore volumeAdsorption edgesLight02 engineering and technology01 natural scienceschemistry.chemical_compound[SPI]Engineering Sciences [physics]quinolineVisible-light irradiationMaterials Chemistryoxidizing agentOxidative desulfurizationirradiationQuinolineCerium021001 nanoscience & nanotechnologyOxidantsFlue-gas desulfurizationCeriumDibenzothiophenePhotocatalysisCharge carrierCarrier mobility0210 nano-technologychemistry.chemical_element010402 general chemistryMaximum EfficiencyCatalysisArticleuraniumAdsorptionphosphotungstic acidpore size distributiondibenzothiophene derivativegreen chemistryphotooxidationDopingdesulfurizationGeneral Chemistrysurface areaPhotocatalytic systems0104 chemical sciencesVisible light inducedDibenzothiophenesTungstophosphoric acidMolecular oxygenPhotocatalytic activitychemistryadsorptiondesorptionoxygenphotocatalysisNuclear chemistrycatalyst
researchProduct

Standard testing of photovoltaic modules for use in renewable energy education

2015

A photovoltaic laboratory exercise has been devised and used in the educational curriculum of the Renewable Energy Programme at the University of Jyväskylä. The purpose of the experimental tasks is to give students of renewable energy a good understanding of standard testing procedures used in industry for characterising photovoltaic modules and to provide practical skills in sizing simple photovoltaic installations. Herein the experimental set-up, basic theory and measurement procedure are described. The experimental apparatus is simple to assemble and uses both standard laboratory equipment and recycled components. From the experimental results, the tested PV cell had a maximum efficiency…

EngineeringMaximum power principlebusiness.industryPhotovoltaic systemSizingAutomotive engineeringlcsh:Education (General)EducationRenewable energyMaximum efficiencyElectronic engineeringProduction (economics)Electric powerbusinessLoad resistancelcsh:L7-991lcsh:Science (General)lcsh:Q1-390LUMAT
researchProduct

A qualitative examination of performance and energy yield of photovoltaic modules in southern Norway

2010

Three different, commercially available photovoltaic modules have been monitored outdoors in the town of Grimstad, Norway. The present paper describes the experimental setup that was implemented, in particular details of the low-cost electronic loads. Results compare measured performance with manufacturer's data, and temperature measurements enable a comparison with performance at standard test condition temperature. Overall, the monocrystalline module performed best both regarding maximum efficiency and overall energy production, whereas the module based on triple junction amorphous silicon technology had the worst performance considering these criteria. The gross numbers of energy yield c…

Amorphous siliconEngineeringRenewable Energy Sustainability and the Environmentbusiness.industryPhotovoltaic systemElectrical engineeringSolar energyTemperature measurementAutomotive engineeringMonocrystalline siliconMaximum efficiencychemistry.chemical_compoundchemistryPerformance ratiobusinessEnergy (signal processing)Renewable Energy
researchProduct

Efficiency optimization in bi-directional inductive power transfer systems

2015

Inductive Power Transfer (IPT) allows to wirelessly supply electronic devices. Thus, it is a very smart technique of battery charging for electric vehicles. In a parking area scenario, IPT is a proper method aiming at the energy transfer from the vehicle battery to the electric grid too. Bi-Directional Inductive Power Transfer (BDIPT) Systems are an attractive solution for the automotive market. Due to the great relevance of the energy saving problem, the goal of an efficiency maximization is researched by the energy market. In this paper, an in-depth investigation of the power efficiency in BDIPT systems is carried out, aiming at the optimum efficiency.

Battery (electricity)EngineeringDelaybi-directional inductive power transferbusiness.industryElectrical engineeringWireless communicationBidirectional controlSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciGridVehicleBatterieCouplingWirelessMaximum power transfer theoremwireless battery chargingEnergy marketElectronicsmaximum efficiencybusinessElectrical efficiencyHarmonic analysiEnergy (signal processing)
researchProduct